Exercise 40

Brain weight B as a function of body weight W in fish has been modeled by the power function $B=0.007 W^{2 / 3}$, where B and W are measured in grams. A model for body weight as a function of body length L (measured in centimeters) is $W=0.12 L^{2.53}$. If, over 10 million years, the average length of a certain species of fish evolved from 15 cm to 20 cm at a constant rate, how fast was this species' brain growing when the average length was 18 cm ?

Solution

Write B, the brain mass, in terms of L, the body length.

$$
\begin{aligned}
B & =0.007 W^{2 / 3} \\
& =0.007\left(0.12 L^{2.53}\right)^{2 / 3} \\
& =0.007(0.12)^{2 / 3} L^{5.06 / 3}
\end{aligned}
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(B) & =\frac{d}{d t}\left[0.007(0.12)^{2 / 3} L^{5.06 / 3}\right] \\
\frac{d B}{d t} & =0.007(0.12)^{2 / 3}\left(\frac{5.06}{3}\right) L^{(5.06 / 3)-1} \cdot \frac{d L}{d t} \\
& \approx 0.007(0.12)^{2 / 3}\left(\frac{5.06}{3}\right) L^{(5.06 / 3)-1} \cdot \frac{20-15}{10,000,000}
\end{aligned}
$$

Therefore, when the average length was 18 cm , the rate of change of the brain mass was

$$
\left.\frac{d B}{d t}\right|_{L=18}=0.007(0.12)^{2 / 3}\left(\frac{5.06}{3}\right)(18)^{(5.06 / 3)-1} \cdot \frac{20-15}{10,000,000} \approx 1.04513 \times 10^{-8} \frac{\text { grams }}{\text { year }} .
$$

